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Abstract
A method is proposed for obtaining certain solutions (TE-polarized
electromagnetic waves) of the Helmholtz equation, describing the reflection
and transmission of a plane monochromatic wave at a (linear or nonlinear)
dielectric film situated between two linear semi-infinite media. All three media
are assumed to be lossless, nonmagnetic and isotropic. The permittivity of the
film is modelled by (i) a continuously differentiable real-valued function of
the transverse coordinate, and by (ii) a Kerr-nonlinearity. It is shown that the
solution of the Helmholtz equation exists in the form of a uniformly convergent
series (in case (i)) and in the form of a uniformly convergent sequence (in case
(ii)) of iterations of the equivalent Volterra integral equation. Numerical results
of the approach are presented.

PACS number: 42.65.Tg

1. Introduction

Many problems of optics involve the study of the optical response of a dielectric film with a
specific permittivity. For constant permittivity the problem is of particular interest in linear
optics [1]. For arbitrary varying field intensity independent permittivity, there exists (to our
knowledge) no general solution to Maxwell’s equations. In this case, traditionally the transfer
matrix approach [2] is used discretizing the film by a number of plane parallel dielectric
slabs of infinitesimal thickness with constant permittivity. The optical response of each slab
is described by a 2 × 2 matrix and the net response of the film is obtained through matrix
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Figure 1. Configuration considered in this paper. A plane wave is incident to a linear slab (situated
between two linear media) to be reflected and transmitted.

multiplication. Furthermore the Green function method [3], the invariant embedding approach
[4] and the wave splitting theory [5] are well-known techniques in this respect. Recently, an
iterative approach, based on a pair of coupled differential equations generated from Maxwell’s
equations was proposed [6].

In nonlinear optics, the Kerr-like nonlinear dielectric film has been the focus of a number
of studies [7–12]. With respect to the nonlinear Fabry–Perot system, the present problem
has been approached under special conditions by several authors: Marburger and Felber [13]
simplified the analysis by imposing boundary conditions which suppose the nonlinear slab is
separated from the linear media by perfect mirrors. Danikaert et al [14] treated the steady-
state response of a nonlinear Fabry–Perot resonator including nonlinear absorption and oblique
incidence for transverse-electric and transverse-magnetic polarized fields. Haeltermann et al
[15] and Vitrant [16] presented a unified nonlinear theory for transverse effects of Fabry–Perot
resonators simplifying numerical calculations and providing a good understanding of optical
bistability.

In this paper we suggest an alternative approach to the problem of scattering from a
dielectric film with a permittivity εf (y) = ε̂f (y) + a|E|2, where ε̂f (y) is a continuously
differentiable real-valued function of the transverse coordinate y and a|E|2 denotes the usual
local Kerr-nonlinearity with real a. We transform the Helmholtz equation valid for the film to
a Volterra integral equation and solve the latter by iteration subject to the appropriate boundary
conditions.

The paper is organized as follows. In sections 2 and 3 the linear case (a = 0) is considered.
In section 2 we reduce the Helmholtz equation to a Volterra integral equation for the electric
field intensity and to a quadrature determining the phase of the electric field. The method is
applied to the transmission case in section 3. In section 4 the nonlinear case is considered and
compared with the exact solution if ε̂f (y) = const. The last section contains the summary and
a short outlook.

2. Reduction of the problem to a Volterra integral equation

Referring to figure 1 we consider the reflection and transmission of an electromagnetic plane
wave at a dielectric film between two linear semi-infinite media (substrate and cladding). All
media are assumed to be homogeneous in x- and z-direction, nonabsorbing, isotropic and
non-magnetic. The permittivity of the film is assumed to be characterized by a function εf (y).
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A plane wave of frequency ω0 and intensity E2
0 , with electric vector E0 parallel to the

z-axis (TE) is incident on the film of thickness d. Since the geometry is independent of the
z-coordinate and because of the supposed TE-polarization fields are parallel to the z-axis
(E = Ez). We look for solutions of Maxwell’s equations that satisfy the boundary conditions
(continuity of Ez and ∂Ez/∂y at interfaces y ≡ 0 and y ≡ d). Due to the requirement of the
transactional invariance in x-direction and partly satisfying the boundary conditions the fields
tentatively are written as (ẑ denotes the unit vector in z-direction)

E(x, y, t) =


ẑ 1

2 [E0 ei(px−qc(y−d)−ω0t) + Er ei(px+qc ·(y−d)−ω0t) + c.c.] y > d

ẑ 1
2 [E(y) ei(px+ϑ(y)−ω0t) + c.c.] 0 < y < d

ẑ 1
2 [E3 ei(px−qsy−ω0t) + c.c.] y < 0

(1)

where E(y), p = √
εck0 sin ϕ, qc, and ϑ(y) are real and Er = |Er | exp(iδr) and E3 =

|E3| exp(iδt ) are independent of y. The parameter qs is assumed to be real (transmission case)
in the following. We exclude purely imaginary qs (total reflection case)3.

The permittivity is modelled by

ε(y) =


εc y > d

εf (y) = ε̂f (y) 0 < y < d

εs y < 0
(2)

with real constants εc, εs and with ε̂f as a real continuously differentiable function of y on
[0, d]. By inserting (1) and (2) into Maxwell’s equations we obtain the linear Helmholtz
equations, valid in each of the three media (j = s, f, c),

∂2Ẽj (x, y)

∂x2
+

∂2Ẽj (x, y)

∂y2
+ k2

0εj Ẽj (x, y) = 0 j = s, f, c (3)

where k2
0 = ω2

0

/
c2 and Ẽj (x, y) denotes the time-independent part of E(x, y, t).

Scaling x, y, z, p, qc, qs by the wavelength λ0 and ε by ε0, respectively, equation (3) reads

∂2Ẽj (x, y)

∂x2
+

∂2Ẽj (x, y)

∂y2
+ 4π2εj Ẽj (x, y) = 0 j = s, f, c (4)

where the same symbols have been used for unscaled and scaled quantities. Using ansatz (1)
in equation (4) we get for the semi-infinite media

q2
j = 4π2εj − p2 j = s, c. (5)

For the film (j = f ), we obtain

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+ [4π2 ε̂f (y) − p2]E(y) = 0 (6)

and

E(y)
d2ϑ(y)

dy2
+ 2

dϑ(y)

dy

dE(y)

dy
= 0. (7)

Equation (7) can be integrated leading to

E2(y)
dϑ(y)

dy
= c1 (8)

3 In this case the constants c1, c2 change because equations (22) and (23) must be changed according to the boundary
conditions.
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where c1 is a constant that has to be determined by means of the boundary conditions. Insertion
of dϑ/dy into equation (6) yields

d2E(y)

dy2
+ q2

f (y)E(y) − c2
1

E3(y)
= 0 (9)

with

q2
f (y) = 4π2ε̂f (y) − p2. (10)

As will be shown below, real qs (transmission) implies c1 �= 0. Introducing I (y) = E2(y),
multiplying equation (9) by 4E3(y), and differentiating the result with respect to y we obtain

d3I (y)

dy3
+ 4

d
(
q2

f (y)I (y)
)

dy
= 2

d
(
q2

f (y)
)

dy
I (y). (11)

Representing ε̂f (y) in the form ε̂f (y) = ε0
f + ε̃f (y), where ε0

f is a constant, equation (11) can
be integrated to yield

d2I (y)

dy2
+ 4κ2I (y) = −16π2ε̃f (y)I (y) + 8π2

∫ y

0

d ε̃f (τ )

dτ
I (τ )dτ + c2 (12)

where κ2 = 4π2ε0
f − p2 and c2 denotes another constant of integration. The homogeneous

equation d2I (y)/dy2 + 4κ2I (y) = 0 has the general solution

Ĩ 0(y) = A cos(2κy) + B sin(2κy) (13)

so that the solution of equation (12) reads [17]

I (y) = Ĩ 0(y) +
∫ y

0
dt

sin 2κ(y − t)

2κ

(
c2 + 8π2

∫ t

0
dτ

d ε̃f (τ )

dτ
I (τ ) − 16π2 ε̃f (t)I (t)

)
(14)

where the constant c2 must be determined by the boundary conditions. The Volterra
equation (14) is equivalent to equation (3) for 0 < y < d. According to equation (14) I (y)

and Ĩ 0(y) satisfy the boundary conditions at y = 0. Evaluating the first integral on the right-
hand side, equation (14) can be written as

I (y) = Ĩ 0(y) +
c2

2κ2
sin2(κy) +

∫ y

0
K(y, t)I (t) dt (15)

with

K(y, t) = −8π2 sin 2κ(y − t)

κ
ε̃f (t) − 2π2 cos 2κ(y − t) − 1

κ2

d ε̃f (t)

dt
. (16)

The solution of equation (15) can be represented as a uniformly convergent series of iterations
(cf appendix A):

I (y) =
∞∑

j=0

Ij (y) (17)

Ij (y) =
∫ y

0
K(y, t)Ij−1(t)dt j = 1, 2, . . . (18)

where

I0(y) = Ĩ 0(y) +
c2

2κ2
sin2(κy). (19)

With the solution I (y), determined by equation (17), the phase function ϑ(y) is given,
according to equation (8), by

ϑ(y) = ϑ(d) + c1

∫ y

d

dτ

I (τ )
. (20)
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3. Transmission and reflection at a linear dielectric film

3.1. Boundary conditions and associated relations

We consider the case of real qs . Continuity of E(y) and dE(y)/dy at y = 0 and y = d implies

E(0) = E3 e−iϑ(0) (21)

dE(y)

dy

∣∣∣∣
y=0

= 0 (22)

dϑ(y)

dy

∣∣∣∣
y=0

= −qs (23)

E0 + Er = E(d) eiϑ(d) (24)

2E0 e−iϑ(d) = i

qc

dE(y)

dy

∣∣∣∣
y=d

+ E(d)

(
1 − 1

qc

dϑ(y)

dy

∣∣∣∣
y=d

)
. (25)

According to equations (8), (21) and (23) the constant c1 is given by

c1 = −qs |E3|2 = −qsI (0). (26)

Using equations (9), (12), (21) and (22), the constant of integration c2 in equation (14) is
determined by

c2 = 2|E3|2
(
q2

s + q2
f (0)

) = 2I (0)
(
q2

s + q2
f (0)

)
. (27)

Equations (9), (24), (25), (27) imply

2E0(E0 + Re(Er)) = E2(d) +
qs

qc

|E3|2 (28)

E2(d) = (E0 + Re(Er))
2 + (Im(Er))

2 (29)

and hence

|Er |2 = E2
0 − qs

qc

|E3|2 (30)

or, in terms of reflectivity R and transmissivity T,

R = 1 − qs |E3|2
qcE

2
0

= 1 − T (31)

where R = |Er |2
E2

0
, T = qs |E3|2

qcE
2
0

.

By considering the imaginary parts of equations (24) and (25) one obtains

Im(Er) = −
E(d)

dE(y)

dy

∣∣
y=d

2qcE0
(32)

which leads to, taking into account equations (29), (28), (32),

E2
0 =

( dI (y)

dy

∣∣
y=d

)2
+ 4(qcI (d) + qs |E3|2)2

16I (d)q2
c

. (33)

The phase ϑ(d) can be determined by evaluation of equation (25) to give

sin ϑ(d) = −
dI (y)

dy

∣∣
y=d

4qcE0
√

I (d)
. (34)
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Figure 2. (a) Dependence of the field intensity I (y) (first iteration) inside the slab on the transverse
coordinate y for εc = εs = 1, ε0

f = 1.5, ϕ = 0.35π,E2
0 = 1, d = 1.5. The dashed curve

corresponds to the periodic dependence of εf (y) = ε0
f + δ cos2 b(

y
d
) for δ = 1

30 , b = 10.

The full curve corresponds to the case of constant permittivity εf (y) = ε0
f (δ = 0); (b) the

difference between the intensities from (a).

The phase shift on transmission δt is equal to ϑ(0), the phase shift on reflection is determined
by equations (24) and (30) as

sin δr = −
dI (y)

dy

∣∣
y=d

4qcE
2
0

√
1 − qsI (0)

qcE
2
0

. (35)

3.2. Solutions

Introducing Î (y) = I (y)/I (0) and using the relations of the foregoing subsection the
normalized intensity Î (y) and the phase ϑ(y) can be written as

Î (y) = cos(2κy) +
q2

s + q2
f (0)

κ2
sin2(κy) +

∫ y

0
K(y, t )̂I (t) dt (36)

where equations (13), (21), (22), (27) have been used, and, taking equations (20), (26) and
(34) into account,

ϑ(y) = −arcsin

d̂I (y)

dy

∣∣
y=d√( d̂I (y)

dy

∣∣
y=d

)2
+ 4(qcÎ (d) + qs)2

+ qs

∫ d

y

dτ

Î (τ )
dτ. (37)

Equations (31), (33) together with equations (36), (37) allow the optical response of
the linear film to be calculated for arbitrary thickness d, arbitrary angles of incidence ϕ and
arbitrary permittivity ε̂f (y). Equations (33) and (36) constitute a generalization of Fresnel’s
formulae in linear optics [18].

3.3. A numerical example

To illustrate the foregoing analysis we assume a periodic dependence of εf (y) such that
ε̃f (y) = δ cos2 b(y/d).

The first and the second iterations of (36) lead to expressions for I (y) and ϑ(y), the
corresponding field intensity inside the slab is shown in figures 2–4. In figure 5 the phase
ϑ(y) is plotted.
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Figure 3. Dependence of the field intensity I (y) (second iteration) inside the slab on the transverse
coordinate y for the same parameters as in figure 2.
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Figure 4. Difference between the field intensities after the first and second iterations.
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Figure 5. Phase ϑ(y) inside the film, parameters as in figure 2.

Using equation (33) the reflectivity R is given by

R = 1 − 16qcqs Î (d)( d̂I (y)

dy

∣∣
y=d

)2
+ 4(qcÎ (d) + qs)2

. (38)

Plots of R are presented in figure 6. The character of the obtained dependence of R on
the problem’s parameters (thickness d, angle of incidence ϕ) agrees in general with the ones
obtained for periodic layers [19]. The region, where R ≈ 1 is analogous to Bragg reflection,
well known in the dynamical theory of x-ray reflection [20].
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Figure 6. (a) Dependence of the reflectivity R on the layer thickness d for the same parameters as
in figure 2; (b) dependence of the reflectivity R on the angle of incidence ϕ for the same parameters
as in figure 2.

4. Transmission and reflection at a Kerr-like nonlinear dielectric film

We consider again the transmission case (qs real) and assume a nonlinearity of the permittivity
according to

εf = ε0
f + ε̃f (y) + aE2(y) 0 < y < d (39)

with real constant a. Using the same arguments as in section 2 we get in place of equation (6)

d2E(y)

dy2
− E(y)

(
dϑ(y)

dy

)2

+
[
4π2((ε0

f + ε̃f (y)
)

+ aE2(y)
) − p2]E(y) = 0. (40)

In place of equations (15) and (16) we now obtain

I (y) = Ĩ 0(y) +
c2

2κ2
sin2(κy) +

∫ y

0
K(y, t, I (t))I (t) dt (41)

with

K(y, t, I (t)) = − sin 2κ(y − t)

κ
(8π2ε̃f (t) + 6π2aI (t)) − 2π2 cos 2κ(y − t) − 1

κ2

d ε̃f (t)

dt
.

(42)

The solution of the nonlinear integral equation (41) can be represented as a limit of the
uniformly convergent sequence Ij (y) (cf appendix B)

I (y) = lim
j→∞

Ij (y) (43)

Ij (y) = I0(y) +
∫ y

0
K(y, t, Ij−1(t))Ij−1(t) dt j = 1, 2, . . . (44)

where I0(y) is given by equation (19). The uniform convergence is proved using the Banach
fixed-point theorem. The condition for its applicability leads to a condition for the parameters
of the problem (definitions of ‖N1‖, ‖N2‖, ‖I0‖, see appendices A and B)

‖N1‖ + 2
√

‖N2‖ · ‖I0‖ < 1. (45)

Instead of equation (27) we obtain

c2 = 2I (0)
(
q2

s + q2
f (0) + 2π2aI (0)

)
(46)
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Figure 7. Dependence of the field intensity I (y) (first iteration) inside the slab on the transverse
coordinate y for a = 0.01, other parameters are the same as in figure 2.
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Figure 8. (a) Dependence of the field intensity I (y) inside the slab on the transverse coordinate
y for εc = 1, εs = 1.7, ε0

f = 1.3, ϕ = 63.5◦, b = 10, δ = 0, E2
0 = 1, d = 1.5, a = 0.01. Solid

curve corresponds to the exact solution and dashed to the first iteration of equation (47); (b) the
difference ‘diff’ between the curves from (a).

so that equation (41) reads

I (y) = I (0) cos(2κy) +

(
q2

s + q2
f (0) + 2π2aI (0)

)
I (0)

κ2
sin2(κy)

+
∫ y

0
K(y, t, I (t))I (t) dt (47)

with I (0)(= |E3|2) related to E2
0 according to equation (33). The phase ϑ(y) is given by

ϑ(y) = −arcsin

(
1√
I (y)

dI (y)

dy

)∣∣
y=d

4qcE0
+

∫ d

y

qsI (0)

I (τ )
dτ. (48)

To illustrate the procedure we assume the same periodic dependence of ε̂f (y) and the
same parameters as for the linear case. The first iteration of equation (47) is shown in figure 7.
For the special case δ = 0 the results of the present method can be compared with the exact
solution [21] (cf figure 8).

By means of a parametric plot the reflectivity R and the phase on reflection δr can be
evaluated straightforwardly. Results are depicted in figures 9 and 10.

5. Summary and outlook

We have presented an iterative approach to solve the Helmholtz equation for a dielectric
film with a permittivity according to εf (y) = ε̂f (y) + a|E|2. The solutions for the linear
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Figure 9. Dependence of the reflectivity R on aE2
0 and on the thickness d for εc = 1, εs = 1.7,

ε0
f = 1.3, ϕ = 63.5◦, δ = 0.
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Figure 10. Dependence of the phase of reflection δr on aE2
0 and d for the same parameters as in

figure 9.

case (a = 0) and the nonlinear case (a �= 0) have been expressed in terms of a uniformly
convergent series and a uniformly convergent sequence of iterations of the Volterra equation,
respectively. The main emphasis of the paper was on the derivation of the relationship between
the Helmholtz equation and the Volterra integral equation and the proofs of convergence. Using
the lowest-order iterations, analytical solutions and numerical results have been obtained
straightforwardly. In particular, for the nonlinear case, the quality of the iteration scheme was
estimated by comparison with the exact solution if ε̂f (y) is a constant (section 4) [21].

In any physically realizable film, absorption is present. Thus, it would be most intriguing
to apply the above method to an absorbing film by assuming ε̂f (y) to be complex. But this
represents a nontrivial extension of the procedure. Together with the investigation of a purely
imaginary qs (total reflection) this will be a topic of a future paper.
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Appendix A. Proof of the uniform convergence of series (17) by mathematical induction

Denoting the norm by ‖I0‖ = max0�y�d |I0(y)| and ‖K‖ = max0�y,t�d |K(y, t)| the
iterations Ij (y) can be estimated according to

|Ij (y)| � ‖I0‖‖K‖j yj

j !
. (A.1)

For j = 1 equation (18) implies

|I1(y)| � ‖I0‖
∫ y

0
|K(y, t)|dt � ‖I0‖‖K‖y. (A.2)

Assuming that (A.1) holds one obtains

|Ij+1(y)| � ‖I0‖‖K‖j+1
∫ y

0

t j

j !
dt. (A.3)

Thus (A.1) is valid for all j , leading to

|I (y)| �
∞∑

j=0

|Ij (y)| � ‖I0‖
∞∑

j=0

(‖K‖y)n

n!
= ‖I0‖ ey‖K‖. (A.4)

Series (17) converges uniformly on [o, d].

Appendix B. Proof of the uniform convergence of sequence (43)

We consider the nonlinear operator F

F(I) := I0(y) + N1I + N2I
2 (B.1)

where N1 and N2 are linear bounded integral operators in the Banach space C[o, d] and I0(y)

is given by equation (19).

N1ψ :=
∫ y

0
K1ψ(t) dt N2ϕ :=

∫ y

0
K2ϕ(t) dt (B.2)

with

K1 =
(

− sin 2κ(y − t)

κ
8π2 ε̃f (t) − 2π2 cos 2κ(y − t) − 1

κ2

d ε̃f (t)

dt

)
K2 =

(
−6π2a

κ
sin 2κ(y − t)

)
. (B.3)

The norms ‖N1‖, ‖N2‖ are defined by

‖N1‖ = max
0�y,t�d

∫ y

0
|K1| dt ‖N2‖ = max

0�y,t�d

∫ y

0
|K2| dt. (B.4)

Then equation (41) can be rewritten in the operator form

I (y) = F(I)(y). (B.5)

In order to prove that equation (B.5) under certain assumptions has only one solution, we
consider the following quadratic equation:

z = ‖I0‖ + ‖N1‖z + ‖N2‖z2 (B.6)

where ‖I0‖ is defined in appendix A. This equation has two positive roots if and only if the
following conditions are satisfied:

(‖N1‖ − 1)2 − 4‖N2‖‖I0‖ > 0 ‖N1‖ < 1. (B.7)
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These inequalities imply

‖N1‖ + 2
√

‖N2‖ · ‖I0‖ < 1. (B.8)

Let r and R be the smallest and the largest roots of equation (B.6), respectively. In order
to satisfy the conditions of the Banach fixed-point theorem [22] we have to check whether
operator F maps the ball SR(0) = {y ∈ C[0, d] : ‖y‖ < R} (and Sr(0)) to itself. If
I (y) ∈ SR(0) then

‖F(I)‖ � ‖I0‖ + ‖N1‖‖I‖ + ‖N2‖‖I‖2 < ‖I0‖ + ‖N1‖R + ‖N2‖R2 = R. (B.9)

Thus F(I) ∈ SR(0). Hence equation (B.5) has at least one solution inside SR(0). F is
contractive [22] in Sr(0), because, if I1, I2 ∈ Sr(0), then

‖F(I1) − F(I2)‖ = ‖N1(I1 − I2) + N2
(
I 2

1 − I 2
2

)‖
� ‖N1‖‖I1 − I2‖ + ‖N2‖‖I1 − I2‖‖I1 + I2‖
� ‖N1‖‖I1 − I2‖ + 2r‖N2‖‖I1 − I2‖
= (‖N1‖ + 2r‖N2‖)‖I1 − I2‖. (B.10)

Thus the inequality

‖N1‖ + 2r‖N2‖ < 1 (B.11)

holds and thus the contraction of F. It is not so difficult to check that (B.11) is satisfied if (B.8)
holds. Hence we conclude [22] that the iteration procedure (43), (44) converges uniformly
on [0, d].

References

[1] Born M and Wolf E 1965 Principles of Optics 3rd edn (Oxford: Pergamon) pp 61–6
[2] Griffiths D J 1999 Introductions to Electrodynamics (Englewood Cliffs, NJ: Prentice-Hall) chapter 9
[3] van Rossum M S W and Nieuwenhuizen Th M 1999 Rev. Mod. Phys. 71 313
[4] Heinrichs J 1997 Phys. Rev. B 56 8674
[5] He S, Strom S and Weston V H 1998 Time Domain Wave Splitting and Inverse Problems (Oxford: Oxford

University Press)
See also Gustafsson M 2000 PhD Thesis Lund Institute of Technology, Sweden

[6] Menon S, Su Q and Grobe R 2003 Phys. Rev. E 67 046619
[7] Chen W and Mills D L 1987 Phys. Rev. B 35 524–32
[8] Leung K M 1988 J. Opt. Soc. Am. B 5 571–74
[9] Chen W and Mills D L 1988 Phys. Rev. B 38 12814–22

[10] Leung K M 1988 Phys. Rev. B 39 3590–98
[11] Peschel Th 1988 J. Opt. Soc. Am. B 5 29–36
[12] Schuermann H W and Schmoldt R 1993 Z.Phys. B 92 179–86
[13] Marburger J H and Felber F S 1978 Phys. Rev. A 17 335
[14] Danikaert J, Thienpont H and Veretennicoff I 1989 Opt. Commun. 71 317
[15] Haeltermann M 1990 J. Opt. Soc. Am. B 7 1309
[16] Vitrant G 1990 J. Opt. Soc. Am. B 7 1319
[17] Stakgold I 1967 Boundary Value Problems in Mathematical Physics vol 1 (New York: Macmillan) pp 67–9
[18] Born M and Wolf E 1965 Principles of Optics 3rd edn (Oxford: Pergamon) p 38
[19] Yariv A and Yeh P 1984 Optical Waves in Crystals (New York: Wiley) pp 155–219
[20] Zachariasen W H 1967 Theory of X-Ray Diffraction in Crystals (New York: Dover) p 113
[21] Schuermann H W, Serov V S and Shestopalov Yu V 2001 Physica D 158 197–215
[22] Zeidler E 1995 Applied Functional Analysis: Part I. Applications to Mathematical Physics (New York: Springer)

pp 18–26


